
ar
X

iv
:2

40
6.

03
45

3v
2 

 [
m

at
h.

C
O

] 
 1

2 
Ju

l 2
02

4

ON A SIGN-CHANGE CONJECTURE OF SCHLOSSER AND ZHOU

KATHRIN BRINGMANN, BERNHARD HEIM, AND BEN KANE

Abstract. In this paper, we investigate the signs changes of Fourier coefficients of infinite
products of q-series of Rogers–Ramanujan type. In particular, we prove a conjecture made
by Schlosser–Zhou pertaining to such sign changes for products of modulus 10.

1. Introduction and statement of results

Motivated by his famous three conjectures for finite products, for a prime p, Borwein [3]
investigated the infinite products (now called Borwein products)

Gp(q) :=
∏

n≥1

1− qn

1− qpn
.

Andrews [2, Theorem 2.1] showed that the signs of the coefficients of Gp are periodic with
period p, which was independently proven in unpublished work of Garvan and Borwein by
different methods (see the remark following [2, Theorem 2.1]). In [12], for certain δ ∈ R

Schlosser and Zhou investigated the periodicity of the signs of the Fourier coefficients of
Gp(q)

δ . Schlosser and Zhou primarily focused on the case p = 3 [12], obtaining that the
signs change with period 3 for n ≥ 158 and 0.227 ≤ δ ≤ 2.9999. In [12, Corollary 5], they
proved such results by obtaining formulas for the Fourier coefficients of Gp(q)

δ via the Circle
Method, which in turn arise from the fact that Gp satisfies modular properties. They further
noted that one can obtain exact formulas for these Fourier coefficients by following the work
of Rademacher [10] and Zuckerman [15]. Such exact formulas have a long history. Extending
work of Hardy and Ramanujan [5], Rademacher [10] obtained an exact formula for the number
of partitions of n, and subsequent work of Rademacher–Zuckerman [11], Zuckerman [15], and
Ono and the first author [4] yielded exact formulas for Fourier coefficients of nonpositive
weight weakly holomorphic modular forms i.e., meromorphic modular forms whose poles lie
at the cusps. Using such exact formulas, the method from [12] follows a well-known approach
for determining the signs of Fourier coefficients. The exact formula naturally splits into a
main asymptotic term and an error term. The main asymptotic term overwhelms the error
terms for n sufficiently large, and hence the sign necessarily agrees with the sign of the main
asymptotic term for sufficiently large n.

Schlosser and Zhou [12] conjectured a number of further periodic sign patterns for Fourier
coefficients of powers of other Borwein products and also powers of some functions built from
shifted products of the shape (with m, M ∈ N)

∏

n≥1
n≡m (modM)

(1− qn) .
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In this paper, we prove one of these conjectures. Define

Q10(q) :=

(

q, q9; q10
)

∞

(q3, q7; q10)∞
,

where (a1, . . . , aℓ; q)n := (a1; q)n · · · (aℓ; q)n with (a; q)n :=
∏n−1

j=0 (1−aqj), n ∈ N0 ∪{∞}. For
δ ∈ Z, we write

Qδ
10(q) =:

∑

n≥0

cδ(n)q
n.

The following states Conjecture 22 of [12].

Conjecture 1.1. The coefficients of Qδ
10(q) satisfy for δ = 1 the sign pattern + − + + − −

+−−+ and for δ = −1 the sign pattern ++++−−−−−+. That is to say,

sgn (c1(n)) =

{

1 if n ≡ 0, 2, 3, 6, 9 (mod 10) ,

−1 otherwise,

sgn (c−1(n)) =

{

1 if n ≡ 0, 1, 2, 3, 9 (mod 10) ,

−1 otherwise.

In this paper, we prove Conjecture 1.1.

Theorem 1.2. Conjecture 1.1 is true, except for

c1(n) = 0 for n ∈ {2, 5, 7, 9, 15, 17, 22, 27, 37, 47},
c−1(n) = 0 for n ∈ {3, 4, 5, 6, 9, 13, 19, 23, 29, 39}.

Remarks.

(1) In particular, Q±1
10 (q) has only finitely-many vanishing Fourier coefficients. Several authors

assign to a vanishing coefficient both signs, due to the delicate issue of proving that a
coefficient vanishes (we refer to the well-known Lehmer conjecture). With this weaker
definition of a sign the conjecture of Schlosser and Zhou is true for all n ∈ N0.

(2) While Gp is an eta-quotient, up to a power of q in front, the function Q10 is not, so

the modular properties of Qδ
10 differ from those of Gδ

p. As such, a key step in proving
Conjecture 1.1 is the usage of Jacobi theta functions to establish the modular properties,
and the exact formulas that one obtains are of a different flavor.

(3) Some of the other conjectures in [12] involve similar quotients which have the same shape
as Q10. It is hence likely that the first step towards proving Conjectures 18, 21, and 24
of [12] involve writing these functions as quotients of Jacobi theta functions.

The paper is organized as follows: In Section 2, we recall basic facts concerning weakly
holomorphic modular forms, the Jacobi theta function, the Dedekind η-function, Kloosterman
sums, and Bessel functions. In Section 3, we obtain exact formulas for the counting functions
of interest. Section 4 is devoted to detecting the main term contributions. In Section 5 we
estimate certain Kloosterman-type sums. Section 6 is devoted to estimate the error term.
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2. Preliminaries

2.1. Weakly holomorphic modular forms. We briefly introduce modular forms, but refer
the reader to [9] for more details. A function on the complex upper half-plane F : H → C

satisfies modularity of weight κ ∈ Z on a congruence subgroup Γ ⊆ SL2(Z) with multiplier χ

if for every γ =
(

a b
c d

)

∈ Γ we have

F |κγ = χ(γ)F.

Here the weight κ slash operator is defined for τ ∈ H by

F
∣

∣

κ
γ(τ) := (cτ + d)−κF (γτ).

We call the equivalence classes of Γ\(Q ∪ {i∞}) the cusps of Γ. For each cusp ̺, we choose
a representative1 h

k
∈ Q and M̺ ∈ SL2(Z) such that M̺(i∞) = h

k
; we abuse notation and

also refer to h
k
as a cusp. If a holomorphic function F satisfies weight κ modularity on Γ with

some multiplier χ, then for every cusp ̺ of the function F̺ := F |κM̺ is invariant under the
transformation τ 7→ τ + σ̺ for some σ̺ ∈ N and hence has a Fourier expansion

F̺(τ) =
∑

n∈Z

cF,̺(n)q
n
σ̺ (q := e2πiτ ).

We drop ̺ from the notation if ̺ = i∞. We call F a weight κ weakly holomorphic modular

form on Γ with multiplier χ if F satisfies weight κ modularity on Γ with multiplier χ, is
holomorphic on H, and for each cusp ̺ there exists n0 such that cF,̺(n) = 0 for n < n0. We
furthermore call the terms in the Fourier expansion with n < 0 the principal part of F at the
cusp ̺.

2.2. Special modular forms. We define the Jacobi theta function (throughout w ∈ C)

ϑ(w; τ) :=
∑

n∈Z+ 1
2

q
n2

2 e2πin(w+ 1
2).

We have the Jacobi triple product formula (ζ := e2πiw throughout)

ϑ(w; τ) = −iq
1
8 ζ−

1
2 (q; q)∞(ζ; q)∞

(

ζ−1q; q
)

∞
. (2.1)

The well-known transformation laws of ϑ, going back to Jacobi, may be found for example in
[7, Chapter I, Section 11] or [16, Proposition 1.3]. To state the transformation laws of ϑ and
its growth towards the cusps for Re(z) > 0, k ∈ N, h ∈ Z with gcd(h, k) = 1, and h′ ∈ Z with
hh′ ≡ −1 (mod k), we let ωh,k be defined through2

η

(

1

k
(h+ iz)

)

= e
πi
12k

(h−h′)ω−1
h,kz

− 1
2 η

(

1

k

(

h′ +
i

z

))

.

Lemma 2.1.

1Throughout, we assume that 0 ≤ h < k and gcd(h, k) = 1.
2For the exact shape of ωh,k, see [1, (5.2.4)].
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(1) Suppose that w, z ∈ C with Re(z) > 0, k ∈ N, h ∈ Z with gcd(h, k) = 1, and h′ ∈ Z with

hh′ ≡ −1 (mod k). Then we have

ϑ

(

w;
1

k
(h+ iz)

)

= e
πi
4k

(h−h′)e
3πi
4 ω−3

h,k

√

i

z
e−

πkw2

z ϑ

(

iw

z
;
1

k

(

h′ +
i

z

))

.

(2) Suppose that w ∈ C, τ ∈ H, and λ, µ ∈ Z. Then

ϑ(w + λτ + µ; τ) = (−1)λ+µq−
λ2

2 ζ−λϑ(w; τ).

(3) For 0 ≤ a < 1 and b ∈ R, we have

ϑ(aτ + b; τ) = −ie−πibq
1
8
− a

2

(

1 +O
(

qmin{a,1−a}
))

.

2.3. Zuckerman’s exact formula. To state the exact formula of Zuckerman [15, Theorem
1], which has been extended to a larger class of functions which include weight zero weakly
holomorphic modular forms by Ono and the first author [4, Theorem 1.1], let Iα denote the
usual I-Bessel function.

Theorem 2.2. Let κ ≤ 0. Suppose that F is a weakly holomorphic modular form of weight

κ on a congruence subgroup Γ with transformation law

F

(

1

k
(h+ iz)

)

= χ(γh,k)(−iz)−κF̺

(

1

k

(

h′ +
i

z

))

for some multiplier χ : SL2(Z) → C and where γh,k :=
(

h β
k −h′

)

∈ SL2(Z). Assume that F

has the Fourier expansion at i∞, F (τ) =
∑

n≫−∞ a(n)qn+α, and the Fourier expansions at

each 0 ≤ h
k
< 1, F |κγh,k(τ) =

∑

n≫−∞ ah,k(n)q
n+αh,k

ck . Then for n+ α > 0, we have

a(n) = 2π(n+ α)
κ−1
2

∑

k≥1

1

k

∑

0≤h<k
gcd(h,k)=1

χ(γh,k)e
− 2πi(n+α)h

k

×
∑

m+αh,k≤0

ah,k(m)e
2πi
kck

(m+αh,k)h
′

( |m+ αh,k|
ck

)
1−κ
2

I−κ+1





4π

k

√

|m+ αh,k|(n+ α)

ck



 .

2.4. Kloosterman sums. We require the following Kloosterman sums

Kk(n,m) :=
∑

h (mod k)∗

hh′≡−1 (mod k)

e
2πi
k

(nh+mh′), (2.2)

where h (mod k)∗ means that h only runs through coprime element (mod k). Letting d(n)
denote the number of divisors of n, the following bound for the absolute value of these
Kloosterman sums is well-known by work of Weil [14] (see [6, Corollary 11.12]).

Lemma 2.3. Suppose that for k ∈ N, n, m ∈ Z. Then we have

|Kk(n,m)| ≤
√

gcd(n,m, k)d(k)
√
k.
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2.5. Bessel functions. Recall that the I-Bessel function has the well-known integral rep-
resentation for κ ∈ R+ and x ≥ 0 (see [13, p. 79])

Iκ(x) =

(

x
2

)κ

√
πΓ
(

κ+ 1
2

)

∫ 1

−1

(

1− u2
)κ− 1

2 exudu. (2.3)

We require the following bounds.

Lemma 2.4.

(1) For 0 ≤ x < 1, we have

I1(x) ≤ x.

(2) If x ≥ 1, then

I1(x) ≤
√

2

πx
ex.

(3) If x ≥ 3, then

I1(x) ≥
ex

4
√
x
.

Proof. The claims follow from equation (2.3) and are well-known. We give the details for (3)
for the convenience of the reader. Since the integral in (2.3) from −1 to 0 is nonnegative, we
have, making the change of variables u 7→ 1− u,

I1(x) ≥
xex

π

∫ 1

0

√
2− u

√
ue−xudu ≥ xex

π

∫ 1

0

√
ue−xudu =

ex

π
√
x

(√
π

2
− Γ

(

3

2
, x

))

.

Here, for x > 0, the incomplete gamma function is defined by Γ(s, x) :=
∫∞
x

ts−1e−tdt. Using
[8, 8.8.2] and [8, 8.10.10], we then obtain, for x ≥ 3

I1(x) ≥
ex

π
√
x
ex

(√
π

2
− π

√
x

4
e−x

(

√

1 +
4

πx
− 1

)

−
√
xe−x

)

≥ ex

4
√
x
. �

3. Exact formulas

In this section we determine the modularity properties of Q10 and the principal parts of
Q10 and Q−1

10 in every cusp to find exact formulas for their Fourier coefficients.

3.1. Modularity. Using (2.1), we have

Q10(q) = q−1f(τ),

where

f(τ) :=
ϑ(τ ; 10τ)

ϑ(3τ ; 10τ)
.

For h ∈ Z, we write

3h = h1k + h2, h1 ∈ Z, 0 ≤ h2 < k. (3.1)

We set d := gcd(k, 10) throughout and define ν1, ν2, µ1, µ2 ∈ Z with 0 ≤ ν2, µ2 < d via

h = dν1 + ν2, h2 = dµ1 + µ2. (3.2)

Setting ζn := e
2πi
n , a direct calculation using Lemma 2.1 (1), (2) gives the following transfor-

mation law for f .
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Proposition 3.1. Let Re(z) > 0, k ∈ N and h, h′ ∈ Z with gcd(h, k) = 1, 10
d

| h′, and

hh′ ≡ −1 (mod k). Then

f

(

1

k
(h+ iz)

)

= (−1)h1+ν1+µ1ζ
3µ2−ν2
10k e

2πid2

20k (ν21−µ2
1)h′

e
π

10kz (µ
2
2−ν22)e−

4πz
5k

×
ϑ
(

iν2
10
d
kz

− ν1d
2h′

10k − 1
10
d
k
; d2

10k

(

h′ + i
z

)

)

ϑ
(

iµ2
10
d
kz

− µ1d2h′

10k − 3
10
d
k
; d2

10k

(

h′ + i
z

)

) .

3.2. Principal parts and exact formulas.

3.2.1. δ = 1. We next determine the principal parts of f at each cusp in order to obtain an
exact formula for c1(n). Before stating the identity, for k ∈ N, and j ∈ Z with gcd(j, d) = 1,
we define the Kloosterman-type sums

Ak,j(n) :=
∑

1≤h<k
h≡j (mod d)

hh′≡−1 (mod k)
10
d
|h′

(−1)h1+ν1+µ1ζ
3µ2−ν2−d
10k e

2πi
k

(

d2

20 (ν
2
1−µ2

1+ν1−µ1)h′−(n+1)h
)

.

We first note that the above sum only depends on h, h′ (mod k) and rewrite Ak,j(n), uniquely
choosing for j ∈ Z and d | 10 an integer αj(d) satisfying

αj(d) ≡ 3j (mod d) 1 ≤ αj(d) < d. (3.3)

We omit d from the notation if it is clear from the context.

Lemma 3.2. For k ∈ N and d = gcd(k, 10), suppose that 1 ≤ j < d with gcd(j, d) = 1. Then

for n ∈ Z we have

Ak,j(n) = ζ
3αj−j−d

10k

∑

h (mod k)∗

h≡j (mod d)
hh′≡−1 (mod k)

10
d
|h′

(−1)h1+ν1+µ1e
2πi
k

(

d2

20 (ν
2
1−µ2

1+ν1−µ1)h′−(n+1)h
)

.

Proof. First note that since 1 ≤ j ≤ d, 1 ≤ ν2 < d, and

j ≡ h ≡ ν2 (mod d) ⇒ ν2 = j (3.4)

by (3.2). Similarly, since 1 ≤ αj, µ2 < d and

µ2 ≡ 3h ≡ αj (mod d) ⇒ µ2 = αj . (3.5)

Thus

ζ
3µ2−ν2−d
10k = ζ

3αj−j−d

10k

is independent of h and we can pull it outside of the sum.
It hence remains to show that we may let h and h′ run (mod k). We start with h. Clearly

the factor e−
2πi(n+1)h

k is invariant under h 7→ h+ k, so we check that the remaining quantities
do not change as h 7→ h+ ℓk for ℓ ∈ Z. Making the change of variables h 7→ h + ℓk in (3.1)
gives

3(h+ ℓk) = h1k + h2 + 3ℓk = (h1 + 3ℓ)k + h2.
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Thus h2 stays unchanged and h1 7→ h1 + 3ℓ. Moreover, making the change of variables
h 7→ h+ ℓk in (3.2) gives

h+ ℓk = dν1 + ν2 + ℓk = d

(

ν1 + ℓ
k

d

)

+ ν2.

Thus ν2 stays unchanged and ν1 7→ ν1 + ℓk
d
.

Note that since h2 remains unchanged, so do µ1 and µ2. Thus we want

(−1)h1+3ℓ+ν1+ℓ k
d
+µ1e

2πid2

20k

(

(ν1+ℓ k
d )

2
−µ2

1+(ν1+ℓ k
d )−µ1

)

h′

= (−1)h1+ν1+µ1e
2πid2

20k (ν21−µ2
1+ν1−µ1)h′

.

This holds if

(−1)ℓ+ℓ k
d e

2πid2

20k

(

2ℓ k
d
ν1+ℓ2 k2

d2
+ℓ k

d

)

h′

= 1.

Thus we want
ℓ

2
+ ℓ

k

2d
+

d2

20k

(

2ℓ
k

d
ν1 + ℓ2

k2

d2
+ ℓ

k

d

)

h′ ∈ Z.

We now distinguish the cases d = 5 and d = 10.
If d = 5, then 2 | h′ and k

d
is odd. Thus we want

1

2
ℓ

(

1 +
k

5

)

+
1

2

(

2ℓν1 + ℓ2
k

5
+ ℓ

)

h′

2
≡ 0 (mod 1) ⇔ 1

2
ℓ(ℓ+ 1)

h′

2
≡ 0 (mod 1),

which holds.
If d = 10, then we want

ℓ

2
+

ℓk

20
+

ℓ

2

(

2ν1 + ℓ
k

10
+ 1

)

h′ ∈ Z.

Since 2 | k, we have h′ odd, so the left-hand side is

ℓ

2
+

ℓ k
10

2
+

ℓ

2

(

ℓ
k

10
+ 1

)

(mod 1) .

If ℓ is even, then every term is an integer, so the claim follows. If ℓ is odd, then we have

ℓ

2
+

ℓ k
10

2
+

ℓ

2

(

ℓ
k

10
+ 1

)

≡ 1

2
+

k
10

2
+

k
10

2
+

1

2
≡ 0 (mod 1) .

We hence conclude that the sum only depends on h (mod k).
To see the invariance under h′ (mod k), we again split into cases depending on d. For d = 5,

we change h′ into h′ + 2ℓk to preserve the condition 10
d
| h′. We want

e5πi(ν
2
1−µ2

1+ν1−µ1)ℓ = 1.

This holds because 2 | (ν21 − µ2
1 + ν1 − µ1).

For d = 10, we change h′ into h′ + ℓk and we want

e10πi(ν
2
1−µ2

1+ν1−µ1)ℓ = 1.

This also holds. �

Abbreviating

Ak(n) :=
∑

±

Ak,±3(n), (3.6)

we next give the exact formula for c1(n).
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Lemma 3.3. For n ∈ N, we have

c1(n) =

√
2π√

5n+ 8

∑

k≥1
d=gcd(k,10)∈{5,10}

√
d− 4

k
Ak(n)I1

(

2π

5k

√

2(d − 4)(5n + 8)

)

.

Proof. Using Lemma 2.1 (3) with a = ν2
d

and a = µ2

d
, we see by Proposition 3.1 that there

can only be growth as z → 0 if there is growth in the factor

e
π

10kz (µ
2
2−ν22)+

π
10
d

kz
(ν2−µ2)

= e
π

10kz (µ
2
2−ν22+d(ν2−µ2)).

Thus, in order to have growth, we require

µ2
2 − ν22 + d(ν2 − µ2) > 0.

A direct calculation yields that this is satisfied if and only if (d = 5 and ν2 ∈ {2, 3}) or (d = 10
and ν2 ∈ {3, 7}). Equivalently we may describe this as d = 5 and h ≡ ±2 (mod 5) or d = 10
and h ≡ ±3 (mod 10).

Noting that the error term in Lemma 2.1 (3) does not contribute to the principal part, we
obtain as principal part

(−1)h1+ν1+µ1ζ
3µ2−ν2−d
10k e

2πid2

20k (ν21−µ2
1+ν1−µ1)h′

e
π

10kz (µ
2
2−ν22+d(ν2−µ2))e−

4πz
5k . (3.7)

Plugging (3.7) into3 Theorem 2.2, we have

c1(n) =

√
2π√

5n+ 8

∑

k≥1
d=gcd(k,10)∈{5,10}

√
d− 4

k

∑

1≤h≤k
gcd(h,k)=1

h≡±3 (mod d)
hh′≡−1 (mod k)

10
d
|h′

(−1)h1+ν1+µ1ζ
3µ2−ν2−d
10k

× e
2πi
k

(

d2

20 (ν
2
1−µ2

1+ν1−µ1)h′−(n+1)h
)

I1

(

2π

5k

√

2(d − 4)(5n + 8)

)

.

Plugging in (3.6) and the definition of Ak,±3(n) gives the claim. �

3.2.2. δ = −1. To state the exact formula in this case, we abbreviate

Ak(n) :=
∑

±

Ak,±1(−n). (3.8)

Lemma 3.4. For n ∈ N, we have

c−1(n) =

√
2π√

5n − 8

∑

k≥1
d=gcd(k,10)∈{5,10}

√
d− 4

k
Ak(n)I1

(

2π

5k

√

2(d− 4)(5n − 8)

)

.

Proof. We first determine which cusps h
k
contribute a non-trivial principal part. We get a

contribution if (d = 5 and ν2 ∈ {1, 4}) or if (d = 10 and ν2 ∈ {1, 9}), and a straightforward
calculation yields that the principal parts at the corresponding cusps are

(−1)h1+ν1+µ1ζ
d+ν2−3µ2

10k e
2πid2

20k (µ2
1−ν21+µ1−ν1)h′

e
π

10kz (ν
2
2−µ2

2+d(µ2−ν2))e
4πz
5k .

3Note the shift n 7→ n+ 1 because we have a q−1 outside.
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Theorem 2.2 then implies that

c−1(n) =

√
2π√

5n− 8

∑

k≥1
d=gcd(k,10)∈{5,10}

√
d− 4

k

×
∑

1≤h≤k
gcd(h,k)=1

h≡±1 (mod 5)
hh′≡−1 (mod k)

10
d
|h′

(−1)h1+ν1+µ1ζ
ν2+d−3µ2

10k e
2πi
k

(

d2

20 (µ
2
1−ν21+µ1−ν1)h′−(n−1)h

)

I1

(

2π

5k

√

2(d− 4)(5n − 8)

)

.

Plugging in (3.6) and the definition of Ak,±1(n) gives the claim. �

4. Main term contributions

In this section we split c1(n) and c−1(n) into a main plus an error term.

4.1. δ = 1. We define

M1(n) :=
2
√
3π

5
√
5n+ 8

cos

(

2π

(

4

25
+

3n

10

))

I1

(

2π

25

√

3(5n + 8)

)

,

E1(n) :=

√
2π√

5n+ 8

∑

k≥1
d=gcd(k,10)∈{5,10}

k 6=10

√
d− 4

k
Ak(n)I1

(

2π

5k

√

2(d − 4)(5n + 8)

)

.

Lemma 4.1. For n ∈ N, we have

c1(n) = M1(n) + E1(n).

Moreover, if |E1(n)| < |M1(n)|, then sgn(c1(n)) agrees with what is claimed in Conjecture 1.1

for these n.

Proof. By Lemma 3.3, the identity is equivalent to proving that M1(n) is the term k = 10.
Namely, we need to show that

M1(n) =

√
3π

5
√
5n + 8

A10(n)I1

(

2π

25

√

3(5n + 8)

)

. (4.1)

Plugging in Lemma 3.2 and recalling the definition (3.3) to simplify A10(n), the right-hand
side of (4.1) becomes

√
3π

5
√
5n + 8

I1

(

2π

25

√

3(5n + 8)

)

∑

h∈{3,7}

(−1)h1ζ
3αh(10)−h−10
100 e−

2πi(n+1)h
10 .

Noting that the sum on h equals 2 cos(2π( 4
25+

3n
10 )) yields (4.1), and hence the claimed identity.

Now assume that |E1(n)| < |M1(n)|. In this case, we conclude that

sgn (c1(n)) = sgn (M1(n)) = sgn

(

cos

(

2π

(

4

25
+

3n

10

)))

.

This gives the sign pattern +−++−−+−−+, matching what is claimed. �
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4.2. δ = −1. We define

M−1(n) :=
2
√
3π

5
√
5n− 8

cos

(

2π

(

3

25
− n

10

))

I1

(

2π

25

√

3(5n − 8)

)

,

E−1(n) :=

√
2π√

5n − 8

∑

k≥1
d=gcd(k,10)∈{5,10}

k 6=10

√
d− 4

k
Ak(n)I1

(

2π

5k

√

2(d− 4)(5n − 8)

)

.

As before, we obtain the following.

Lemma 4.2. For n ∈ N, we have

c−1(n) = M−1(n) + E−1(n).

Moreover, if |E−1(n)| < |M−1(n)|, then sgn(c−1(n)) agrees with what is claimed in Conjec-

ture 1.1 for this n.

5. Kloosterman sums bounds

5.1. d = 5.

Lemma 5.1. If k ∈ N with d = gcd(k, 10) = 5 and j ∈ Z with gcd(j, 5) = 1, then for n ∈ Z

we have

|Ak,j(n)| ≤ 2d(k)

√

k

5
.

Proof. Since Ak,j only depends on j (mod 5), we assume without loss of generality that
1 ≤ j ≤ 4. By Lemma 3.2, we have

Ak,j(n) = ζ
3αj−j−5
10k

∑

h (mod k)∗

h≡j (mod 5)
hh′≡−1 (mod k)

2|h′

(−1)h1+ν1+µ1e
2πi
k ( 5

4(ν
2
1−µ2

1+ν1−µ1)h′−(n+1)h).

Note that by (3.5) µ2 = αj only depends on j. Rearranging (3.2), we have, using (3.1),

ν1 =
h− j

5
, µ1 =

3h− h1k − αj

5
.

Note that, using (3.1) and (3.2),

h1 ≡ h+ h2 (mod 2), µ1 ≡ h2 + αj (mod 2), ν1 ≡ h+ j (mod 2).

Thus
h1 + ν1 + µ1 ≡ j + αj (mod 2) .

This yields that

Ak,j(n) = (−1)j+αjζ
3αj−j−5
10k

∑

h (mod k)∗

h≡j (mod 5)
hh′≡−1 (mod k)

2|h′

e
2πi
k ( 5

4(ν
2
1−µ2

1+ν1−µ1)h′−(n+1)h). (5.1)

We next simplify e
2πiA
4k , where

A := 5
(

ν21 − µ2
1 + ν1 − µ1

)

h′ = 5

(

(

h−j
5

)2
−
(

3h−h1k−αj

5

)2
+ h−j

5 − 3h−h1k−αj

5

)

h′
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= 1
5

(

−8h2 + (6αj − 2j − 10)h − h21k
2 + 6hh1k + (5− 2αj)h1k + j2 − 5j − α2

j + 5αj

)

h′.

Now we choose h′ with 4 | h′. Then A ≡ 0 (mod 4). Moreover we choose h′ with hh′ ≡
−1 (mod 5k). Then we obtain

A ≡ 1

5

(

8h− (6αj − 2j − 10)− 6h1k + (5− 2αj)h1kh
′ +
(

j2 − 5j − α2
j + 5αj

)

h′
)

≡ 1

5

(

8h+
(

j2 − 5j − α2
j + 5αj

)

h′ − (6αj − 2j − 10)
)

=
4

5

(

2h+
1

2

(

j2 − 5j − α2
j + 5αj

) h′

2

)

− 2

5
(3αj − j − 5) (mod k).

Plugging back into (5.1), it is not hard to see that

Ak,j(n) = −
∑

h (mod k)∗

h≡j (mod 5)
hh′≡−1 (mod 5k)

4|h′

e
2πi
k

(

1
5

(

2h+(j2−5j−α2
j+5αj)h′

4

)

−(n+1)h
)

.

We next make the change of variables h′ 7→ 4h′, and note that we may take [4]5k = 1−k2

4 .
Thus we obtain

Ak,j(n) = − 1

25

∑

ℓ (mod 5)

e
2πijℓ

5

∑

h (mod 5k)∗

hh′≡−1 (mod 5k)

e
2πi
5k

((

(5n+3)k
2
−1
4

+ℓk
)

h+(j2−5j−α2
j+5αj)h′

)

,

since
∑

ℓ (mod 5)

e
2πi
5

(h+j)ℓ =

{

5 if h ≡ −j (mod 5),

0 otherwise.

Plugging in definition (2.2), we obtain

Ak,j(n) = − 1

25

∑

ℓ (mod 5)

e
2πijℓ

5 K5k

(

(5n+ 3)
k2 − 1

4
+ ℓk, j2 − 5j − α2

j + 5αj

)

.

We now use Lemma 2.3 and

d(5k) ≤ d(5)d(k) = 2d(k) (5.2)

to bound
∣

∣

∣

∣

K5k

(

(5n+ 3)
k2 − 1

4
+ ℓk, j2 − 5j − α2

j + 5αj

)∣

∣

∣

∣

≤
√

gcd

(

(5n + 3)
k2 − 1

4
+ ℓk, j2 − 5j − α2

j + 5αj , 5k

)

d(5k)
√
5k

≤
√
2

√

∣

∣

∣
j2 − 5j − α2

j + 5αj

∣

∣

∣
d(k)

√
5k,

where we note that 2 cannot divide the gcd because 5k is odd. Thus

|Ak,j(n)| ≤
√
2k√
5

√

∣

∣

∣
j2 − 5j − α2

j + 5αj

∣

∣

∣
d(k).
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We finally compute

j2 − 5j − α2
j + 5αj =

{

2 if j ∈ {1, 4},
−2 if j ∈ {2, 3}. �

5.2. d = 10. For d = 10, we have the following.

Lemma 5.2. If k ∈ N with gcd(k, 10) = 10 and j ∈ Z with gcd(j, 10) = 1, then for n ∈ Z we

have

|Ak,j(n)| ≤ d(10k)

√

3k

5
.

Proof. We again assume without loss of generality that 1 ≤ j < 10. By Lemma 3.2, we have

Ak,j(n) = ζ
3αj−j−10
10k

∑

h (mod k)∗

h≡j (mod 10)
hh′≡−1 (mod k)

(−1)h1+ν1+µ1e
2πi
k (5(ν21−µ2

1+ν1−µ1)h′−(n+1)h).

We next write the factor involving h′ as e
2πiB

k . By (3.4) and (3.5), we have that ν2 = j and
µ2 = αj . By (3.1) and (3.2), we have

ν1 =
h− j

10
, µ1 =

3h− h1k − αj

10
.

Thus we have

B = 5
(

ν21 − µ2
1 + ν1 − µ1

)

h′ = 5

(

(

h−j
10

)2
−
(

3h−h1k−αj

10

)2
+ h−j

10 − 3h−h1k−αj

10

)

h′

= 1
5

(

−2h2 +
(

3αj−j

2 − 5
)

h+ 3hh1
k
2 + (5− αj) h1

k
2 − h21

k2

4 + 1
4

(

j2 − 10j − α2
j + 10αj

)

)

h′.

We note that since j ∈ {1, 3, 7, 9}, we have αj ∈ {3j, 3j − 20}, so αj ≡ j (mod 2), and hence
j2

4 − α2
j

4 ∈ Z and
j+cαj

2 ∈ Z for any odd c. We now choose h′ so that hh′ ≡ −1 (mod 10k),
giving

B ≡ 2
5h+

1
10(j−3αj)+1+ 1

20

(

j2 − 10j − α2
j + 10αj

)

h′− k
10h1

(

3 + (αj − 5)h′ + h′ k2
)

(mod k) .

Next we use that αj ≡ 3j (mod 10) and h′ ≡ −[j]10 (mod 10) to show that

B ≡ 2
5h+ 1

10(j − 3αj) + 1 + 1
20

(

j2 − 10j − α2
j + 10αj

)

h′ − k
2h1[j]10

(

1− k
10

)

(mod k) . (5.3)

We now distinguish two cases depending on whether 2 || k or 4 | k. If 2 || k, then we have

k

2
h1[j]10

(

1− k

10

)

≡ 0 (mod k) .

Thus we obtain in this case

B ≡ 2

5
h+

1

10
(j − 3αj) + 1 +

1

20

(

j2 − 10j − α2
j + 10αj

)

h′ (mod k) .

We next simplify the sign factor in this case. Plugging ν2 = j and µ2 = αj into (3.1) and
(3.2), we conclude that

3(10ν1 + j) = h1k + h2 = h1k + 10µ1 + αj .

Taking this modulo 4, we obtain

h1 + ν1 + µ1 ≡
1

2
(αj + j) (mod 2).
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Thus the sign factor becomes (−1)
αj+j

2 , which only depends on j. We may also pull out the
contribution from the term 1

10(j − 3αj) + 1. In this case, we obtain overall

|Ak,j(n)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

h (mod k)∗

h≡j (mod 10)
hh′≡−1 (mod 10k)

e
2πi
5k (−(5n+3)h+ 1

4(j
2−10j−α2

j+10αj)h′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.4)

We next consider the case 4 | k. In this case

k

2
h1[j]10

(

1− k

10

)

≡ k

2
h1[j]10 (mod k) .

Noting that [j]10 ≡ j ≡ 1 (mod 2) because gcd(j, 10) = 1, this term contributes

e
2πi k2 h1[j]10

k = (−1)h1 .

Plugging this into (5.3), for 4 | k we have

e
2πiB

k = (−1)h1e
2πi
5k (2h+

1
2
(j−3αj+10)+ 1

4(j
2−10j−α2

j+10αj)h′).

We again plug ν2 = j and µ2 = αj into (3.1) and (3.2) to obtain

15ν1 − 5µ1 = h1
k

2
+

αj − 3j

2
.

Since 4 | k, we obtain

ν1 + µ1 ≡
αj + j

2
(mod 2).

Thus in this case, we obtain again (5.4).
We then write the Kloosterman sum as

|Ak,j(n)| =
1

50

∣

∣

∣

∣

∣

∣

∑

ℓ (mod 5)

e−
2πijℓ

5 K10k

(

2(kℓ − 5n − 3),
1

2

(

j2 − 10j − α2
j + 10αj

)

)

∣

∣

∣

∣

∣

∣

.

Thus, using Lemma 2.3,

|Ak,j(n)| ≤
1

10

√

max
0≤ℓ≤4

gcd

(

2(kℓ− 5n− 3),
1

2

(

j2 − 10j − α2
j + 10αj

)

, 10k

)

d(10k)
√
10k

≤ 1

10

√

∣

∣

∣j2 − 10j − α2
j + 10αj

∣

∣

∣

√
5kd(10k).

Finally, we compute

j2 − 10j − α2
j + 10αj =

{

12 if j ∈ {1, 9},
−12 if j ∈ {3, 7}. �

6. Bounding the error terms

6.1. δ = 1. We explicitly need to bound the Kloosterman sums defined in (3.6). For this, we
distinguish two cases.
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6.1.1. d = 5. First assume that d = 5. Using (3.6), we obtain the following from Lemma 5.1.

Lemma 6.1. If k ∈ N with gcd(k, 10) = 5, then for n ∈ Z we have

|Ak(n)| ≤ 4d(k)

√

k

5
.

Using Lemma 3.3 and Lemma 6.1, the contribution from d = 5 can be bounded against

4
√
2π

5
√
5n + 8

∑

k≥1

d(5k)√
k

I1

(

2π

25k

√

2(5n + 8)

)

. (6.1)

By Lemma 2.4 (1) and (5.2) together with the well-known identity

∑

n≥1

d(n)

ns
= ζ(s)2 (6.2)

for Re(s) > 1, the contribution from the terms with k > 2π
25

√

2(5n + 8) can be bounded
against

16π2

125

∑

k> 2π
25

√
2(5n+8)

d(5k)

k
3
2

≤ 32π2ζ
(

3
2

)2

125
. (6.3)

The remaining contribution can be estimated against

4
√
2π

5
√
5n+ 8

I1

(

2π

25

√

2(5n + 8)

)

∑

1≤k≤ 2π
25

√
2(5n+8)

d(5k)√
k

. (6.4)

We use (5.2) and then note that since divisors of k come in pairs (d, k
d
) with min{d, k

d
} ≤ √

n,
we may trivially bound

d(k) ≤ 2
√
k. (6.5)

So we may estimate (6.4) against

64π2

125
I1

(

2π

25

√

2(5n + 8)

)

. (6.6)

6.1.2. d = 10. Using again (3.6) and Lemma 5.2, we obtain the following.

Lemma 6.2. If k ∈ N with gcd(k, 10) = 10, then for n ∈ Z we have

|Ak(n)| ≤ 2d(10k)

√

3k

5
.

Using Lemma 6.2, the absolute value of the contribution to Lemma 3.3 from 10|k, k ≥ 11
can be bounded against

6
√
2π

5
√
5n+ 8

∑

k≥2

d(100k)√
k

I1

(

2π

25k

√

3(5n + 8)

)

. (6.7)

Plugging in (6.5) to estimate

d(100k) ≤ d(100)d(k) = 9d(k) ≤ 18
√
k,

we may bound (6.7) from above by
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108
√
2π

5
√
5n+ 8

⌊

2π
25

√
3(5n+8)

⌋

∑

k=2

I1

(

2π

25k

√

3(5n + 8)

)

+
54
√
2π

5
√
5n+ 8

∑

k> 2π
25

√
3(5n+8)

d(k)√
k
I1

(

2π

25k

√

3(5n + 8)

)

. (6.8)

Again using Lemma 2.4 (1) and (6.2), the part from k > 2π
25

√

3(5n + 8) contributes

54
√
2π

5
√
5n+ 8

∑

k> 2π
25

√
3(5n+8)

2πd(k)

25k
3
2

√

3(5n + 8) ≤ 108
√
6π2

125
ζ

(

3

2

)2

. (6.9)

Next, we bound the remaining contribution against

108
√
2π

5
√
5n+ 8

∑

2≤k≤ 2π
25

√
3(5n+8)

I1

(

2π

25k

√

3(5n + 8)

)

≤ 216
√
6π2

125
I1

( π

25

√

3(5n + 8)
)

. (6.10)

6.1.3. Overall bound. Plugging (6.3) and (6.6) into (6.1) and (6.9) and (6.10) into (6.8) and
then taking the sum, we obtain a bound for |E1(n)|. Hence, by Lemma 4.1, we conclude that
sgn(c1(n)) agrees with its claimed value in Conjecture 1.1 if
(

2
√
3π

5
√
5n+ 8

∣

∣

∣

∣

cos

(

2π

(

4

25
+

3n

10

))∣

∣

∣

∣

I1

(

2π

25

√

3(5n + 8)

)

)−1(

32π2ζ
(

3
2

)2

125

+
64π2

125
I1

(

2π

25

√

2(5n + 8)

)

+
108

√
6π2ζ

(

3
2

)2

125
+

216
√
6π2

125
I1

( π

25

√

3(5n + 8)
)

)

< 1.(6.11)

By Lemma 2.4 (3), if 2π
25

√

3(5n + 8) ≥ 3 (which is true for n ≥ 8), then

I1

(

2π

25

√

3(5n + 8)

)

≥ 5e
2π
25

√
3(5n+8)

4
√
2π · 3 1

4 (5n+ 8)
1
4

.

By Lemma 2.4 (2), if 2π
25

√

2(5n + 8) ≥ 1 (which holds for all n ∈ N), then

I1

(

2π

25

√

2(5n + 8)

)

≤ 5e
2π
25

√
2(5n+8)

2
1
4π(5n + 8)

1
4

.

Finally, if π
25

√

3(5n + 8) ≥ 1 (which holds for n ≥ 3), then Lemma 2.4 (2) implies that

I1

( π

25

√

3(5n + 8)
)

≤ 5
√
2e

π
25

√
3(5n+8)

3
1
4π(5n+ 8)

1
4

.

So, for n ≥ 8, we may bound the left-hand side of (6.11) against

2
√
2(5n + 8)

3
4

3
1
4
√
π
∣

∣cos
(

2π
(

4
25 + 3n

10

))∣

∣

e−
2π
25

√
3(5n+8)

×
(

(

8 + 27
√
6
) 4π2ζ

(

3
2

)2

125
+

32 · 2 3
4πe

2π
25

√
2(5n+8)

25(5n + 8)
1
4

+
432 · 3 1

4πe
π
25

√
3(5n+8)

25(5n + 8)
1
4

)

.
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Now
∣

∣

∣

∣

cos

(

2π

(

4

25
+

3n

10

))∣

∣

∣

∣

≥
∣

∣

∣

∣

cos

(

13π

25

)∣

∣

∣

∣

.

Thus we want

2
√
2(5n+ 8)

3
4

3
1
4
√
π
∣

∣cos
(

13π
25

)∣

∣

e−
2π
25

√
3(5n+8)

×
(

(

8 + 27
√
6
) 4π2ζ

(

3
2

)2

125
+

32 · 2 3
4πe

2π
25

√
2(5n+8)

25(5n + 8)
1
4

+
432 · 3 1

4πe
π
25

√
3(5n+8)

25(5n + 8)
1
4

)

< 1.

One can show that this holds for n ≥ 2929. Using a computer, the inequality claimed in
Conjecture 1.1 has been numerically confirmed for n ≤ 2928 (other than the noted exceptions
where the coefficient vanishes), and hence we may conclude the claim for all n ∈ N.

6.2. δ = −1.

6.2.1. d = 5. Using (3.8) and Lemma 5.1, we directly obtain the following.

Lemma 6.3. If k ∈ N with gcd(k, 10) = 5, then for n ∈ Z we have

|Ak(n)| ≤ 4d(k)

√

k

5
.

Plugging in Lemma 6.3, the overall contribution to E−1(n) from d = 5 can be bounded
against

4
√
2π

5
√
5n − 8

∑

k≥1

d(5k)√
k

I1

(

2π

25k

√

2(5n − 8)

)

.

Now we can proceed exactly as for δ = 1 (just changing 5n + 8 into 5n − 8) to obtain that
this may be estimated against

32π2ζ
(

3
2

)2

125
+

64π2

125
I1

(

2π

25

√

2(5n − 8)

)

.

6.2.2. d = 10. Again using (3.8) and Lemma 5.2, we obtain the following.

Lemma 6.4. If k ∈ N with gcd(k, 10) = 10, then for n ∈ Z we have

|Ak(n)| ≤ 2d(10k)

√

3k

5
.

Overall we obtain that the contribution with 10 | k, k ≥ 11 can bounded against

6
√
2π

5
√
5n− 8

∑

k≥2

d(100k)√
k

I1

(

4π

50k

√

3(5n − 8)

)

.

Exactly as in the case δ = 1 this may be estimated against

108
√
6π2

125
ζ

(

3

2

)2

+
216

√
6π2

125
I1

( π

25

√

3(5n − 8)
)

.
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6.2.3. Overall bound. As above we obtain that we want for n ≥ 12

2
√
2(5n− 8)

3
4

3
1
4
√
π
∣

∣cos
(

14π
25

)∣

∣

e−
2π
25

√
3(5n−8)

×
(

(

8 + 27
√
6
) 4π2

125
ζ

(

3

2

)2

+
32 · 2 3

4πe
2π
25

√
2(5n−8)

25(5n − 8)
1
4

+
432 · 3 1

4πe
π
25

√
3(5n−8)

25(5n − 8)
1
4

)

< 1.

It is not hard to check that this holds for n ≥ 2234. Using a computer, the inequality claimed
in Conjecture 1.1 has been numerically verified for n ≤ 2233 (up to the noted exceptions
where the coefficient vanishes), and hence we may conclude the claim for all n ∈ N.
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